Three Generative, Lexicalised Mode l s for Statistical Parsing
ثبت نشده
چکیده
In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised context-free grammar. We then extend the model to include a probabilistic treatment of both subcategorisation and wh-movement. Results on Wall Street Journal text show that the parser performs at 88.1/87.5% constituent precision/recall, an average improvement of 2.3% over (Collins 96).
منابع مشابه
Three Generative, Lexicalised Models for Statistical Parsing
In this paper we first propose a new statistical parsing model, which is a generative model of lexicalised context-free grammar. We then extend the model to include a probabilistic treatment of both subcategorisation and wh-movement. Results on Wall Street Journal text show that the parser performs at 88.1/87.5% constituent precision/recall, an average improvement of 2.3% over (Collins 96).
متن کاملLearning Structured Classifiers for Statistical Dependency Parsing
My research is focused on developing machine learning algorithms for inferring dependency parsers from language data. By investigating several approaches I have developed a unifying perspective that allows me to share advances between both probabilistic and non-probabilistic methods. First, I describe a generative technique that uses a strictly lexicalised parsing model, where all the parameter...
متن کاملTitle of Thesis: Learning Structured Classifiers for Statistical Dependency Parsing Learning Structured Classifiers for Statistical Dependency Parsing
In this thesis, I present three supervised and one semi-supervised machine learning approach for improving statistical natural language dependency parsing. I first introduce a generative approach that uses a strictly lexicalised parsing model where all the parameters are based on words, without using any part-of-speech (POS) tags or grammatical categories. Then I present an improved large margi...
متن کاملCoordinate Noun Phrase Disambiguation in a Generative Parsing Model
In this paper we present methods for improving the disambiguation of noun phrase (NP) coordination within the framework of a lexicalised history-based parsing model. As well as reducing noise in the data, we look at modelling two main sources of information for disambiguation: symmetry in conjunct structure, and the dependency between conjunct lexical heads. Our changes to the baseline model re...
متن کاملCollocations of Complex Nouns: Evidence for Lexicalisation
This paper combines a corpus-based study of noun+verb collocations with an attempt to distinguish compositional, regularly formed compounds from lexicalised ones. We claim that morphologically regular, compositional compounds share most of their collocational preferences with their compound heads, whereas lexicalised compounds have their own collocational preferences, distinct or only marginall...
متن کامل